Remarkable NO oxidation on single supported platinum atoms
نویسندگان
چکیده
Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-Al2O3 supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3 supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms are as active as fully formed platinum particles. Thus, the overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.
منابع مشابه
Effect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملElectrosynthesized Reduced Graphene Oxide-Supported Platinum, Platinum-Copper and Platinum-Nickel Nanoparticles on Carbon-Ceramic Electrode for Electrocatalytic Oxidation of Ethanol in Acidic Media
In this work, the electrocatalytic oxidation of ethanol was studied in acidic media at the wholly electrosynthesized nanocomposites: platinum and its alloys (copper and nickel) anoparticles/reduced graphene oxide on the carbon-ceramic electrode (Pt/rGO/CCE, Pt-Cu/rGO/CCE, and Pt-Ni/rGO/CCE electrocatalysts). The electrosynthesized nanocomposites were characterized by scan...
متن کاملNanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study
With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetr...
متن کاملIdentification of active sites in CO oxidation and water-gas shift over supported Pt catalysts.
Identification and characterization of catalytic active sites are the prerequisites for an atomic-level understanding of the catalytic mechanism and rational design of high-performance heterogeneous catalysts. Indirect evidence in recent reports suggests that platinum (Pt) single atoms are exceptionally active catalytic sites. We demonstrate that infrared spectroscopy can be a fast and convenie...
متن کاملStudy of HMS Modified ZrO2 Supported Platinum Catalysts for Toluene Removal: Catalytic Combustion and Kinetics Study
Reaction behaviors and kinetics of catalytic oxidation of toluene with different feed flows over Pt/Zr(x)-HMS catalysts with Si/Zr ratio equal to 5, 10, 20 and 35 were investigated over a wide temperature range (200 – 500 oC). Results show that Pt/Zr(x)-HMS performs more easily toluene oxidation. The kinetic data were fitted by the Power-law and Mars–van Krevelen kinetic models. The fitting res...
متن کامل